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ABSTRACT 

We describe a computational model of diphone 

perception based on salient properties of peripheral 

and central auditory processing. The model 

comprises an efferent-inspired closed-loop model 

of the auditory periphery connected to a template-

matching neuronal circuit with a gamma rhythm at 

its core. We show that by exploiting auditory 
feedback a place/rate model of central processing 

is sufficient for the prediction of human 

performance in diphone discrimination of minimal 
pairs embedded in background noise – in contrast 

to the need for additional, temporal information 

when open-loop models of the periphery are used. 

We also demonstrate that the template-matching 

circuit exhibits properties, such as time-scaling 

insensitivity, consistent with (and desirable for) 

perception of spoken language. 

1. INTRODUCTION 

This paper examines signal processing principles 

used by the auditory system, in particular when the 

input signal is speech in the presence of 

background noise. A general observation is that 

with worsening environmental conditions, human 

performance in tasks related to speech 

intelligibility deteriorates gracefully compared to 

the performance of machines. This robust behavior 

may be attributed to either a unique form of signal 
processing in the auditory periphery or the use of 

context at higher layers (or a combination of both).  

What role the signal processing in the auditory 

periphery plays in achieving such performance? 

Are current models of the auditory periphery 

accurate enough to duplicate such performance? 

Our scope is restricted to the processing that 

takes place prior to lexical access, on speech 

segments as long as 100 ms (i.e. as long as the 

duration of a monosyllable, e.g. diphone).  At 

present, we have a reasonable understanding of the 

processing principles in the ascending pathway up  

Figure 1: A block diagram of the prediction engine. 

 

 

 
 
 
 
 

 

 

 

 

 

 

through the auditory nerve (AN) - the cochlea, the 

inner hair cells (IHC), the outer hair cells (OHC) - 

and an increasing understanding of the brain-stem 

nuclei (such as the cochlear nucleus, the superior 
olivary complex, and the inferior colliculus).  We 

have limited understanding of the neuronal  

circuitry by which speech is stored and retrieved in 
the auditory cortex, a limited understanding of the 

descending pathway, and little understanding of 

how the ascending and the descending pathways 
interact. 

This study examines, by inference, the possible 

role of two mechanisms, auditory feedback and 
brain rhythmicity, in perceiving speech signals. We 

describe two computational models, an efferent-

inspired closed-loop model of the auditory 
periphery and a template-match neuronal circuit 

(TMC) with an oscillatory drive at its core. From 

the properties of these models we infer the possible 
role of the underlying auditory mechanisms. 

Figure 1 shows a block diagram of the model. It 

comprises an efferent-inspired peripheral auditory 
model (PAM) connected to a TMC. The extent to 

which this model is an accurate description of 

auditory perception is measured within the context 

of perceiving minimal word pairs (differing in their 

initial consonant) in the presence of additive, 

speech-shaped noise. In Section 2, we describe a 

closed-loop model of the auditory periphery that 
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comprises a nonlinear model of the cochlea with 
efferent-inspired feedback. The PAM parameters 

were determined in isolation from the TMC. This 

was achieved by analyzing confusion patterns 
generated in a paradigm with a minimal cognitive 

load (Voiers’ Diagnostic Rhyme Test [DRT] [13], 

with synthetic speech stimuli to restrict phonemic 

variation). In Section 3, we describe initial steps 

towards predicting confusions of naturally spoken 

diphones (i.e. material that exhibits inherent 
phonemic variability). We describe a TMC 

inspired by principles of cortical neural processing 

(Hopfield, [10]). A desirable property of the circuit 
is insensitivity to time-scale variations of the input 

stimuli (associated with phonemic variability). We 

demonstrate the validity of this hypothesis in the 
context of the DRT diphone discrimination task. 

2. PERIPHERAL AUDITORY MODEL 

A reasonable, axiomatic assumption is that 

information in the auditory nerve is the only 

information available to the central nervous system 
(CNS) about acoustic input. While human 

performance in adverse conditions deteriorates 

only modestly, simulated AN representations of 

corrupted speech signals - generated by state-of-

the-art auditory models - are markedly different 

from those associated with clean speech signals. 
For example, for speech in a typically reverberant 

room, there is only a slight deterioration of 

intelligibility (albeit with a noticeable degradation 

in quality) while the acoustic signature of the 

phonemic features in the simulated AN 

representations is severely compromised. Is this 

contrast a result of the incompleteness of current 

models of auditory processing?  

Numerous papers have been published that 

examine how the response of the cochlea may be 

processed to provide a relevant representation of 

the speech signal. Each study utilizes a 

computational model to simulate either the direct 
firing activity or another related representation of 

the cochlear output. The manner in which this 

information is processed differs among the studies, 
reflecting differences in the structural properties of 

the central processor hypothesized by each study. 

These structural properties can be cataloged using 

the following three categories: (1) place/rate 

category, where the central processor possesses 

explicit knowledge of place (i.e. the fibers' 

tonotopic place of origin in the cochlear partition) 

but uses only short-term rate information of the 

neural firings, over a prescribed time window, (2) 
place/temporal category, where place information 

is used together with detailed temporal information 

of local neural responses (i.e. higher-order firing 
statistics, like the interspike interval statistics), and 

(3) non-place/temporal category, where place 

information is omitted altogether and the only 

sources of information are the temporal properties 

of the global neural response (for an excellent 

overview of auditory models the reader is referred 
to [8]). These models of auditory periphery are 

feed-forward models, based on our understanding 

of the ascending auditory pathway up through the 
auditory nerve. A rigorous study of the capabilities 

of these models to reliably represent speech signals 

in a variety of acoustic conditions (e.g., different 
sound intensities, and presence of background 

noise) reached the widely accepted notion that 

place/rate models are insufficient, and that (at 

least) some degree of temporal information is 

required. 

One auditory mechanism that may play a role in 

the robustness of the auditory periphery in the 

presence of background noise is the medial 

olivocochlear (MOC) efferent feedback system. 
Numerous studies have been published providing 

detailed morphological and neurophysiological 

description of the system (e.g. Guinan [9]), as well 

as psychophysical accounts for its effect on the 

sensory representation of signals embedded in 

noise. MOC efferents originate from neurons in the 

medial superior olivary nucleus (MSO) and 

terminate directly on outer hair cells (OHC).  They 

have tuning curves similar to, or slightly broader 

than those of AN fibers (e.g. Guinan [9]), and they 
project to different places along the cochlear 

partition in a tonotopic manner. We currently do 

not have a clear understanding of the functional 
role of this mechanism. One speculated role, which 

is of particular interest for the current study, is a 

dynamic regulation of the cochlear operating point 

that depends on background acoustic stimulation 

and which results in robust human performance in 

perceiving speech in a noisy background. There are 

a few neurophysiologcal studies consistent with 

this hypothesis.  Using anesthetized cats with noisy 

acoustic stimuli, Winslow and Sachs showed that 
by stimulating the MOC nerve bundle electrically, 

the dynamic range of discharge rate at the AN is 

partially recovered, [14]. Measuring neural 
responses of awake cats to noisy acoustic stimuli, 

May and Sachs showed that the dynamic range of 
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Figure 4: Simulated IHC response for open-loop (left) 

and closed-loop PAM (right). 

 

discharge rate in cochlear-nucleus neurons is only 
moderately affected by changes in levels of 

background noise, [11]. Finally, a few behavioral 

studies indicate the potential role of the MOC 
efferent system in perceiving speech in the 

presence of background noise. Dewson presented 

evidence that MOC lesions impair monkeys’ 

ability to discriminate between the vowels [i] and 

[u] in the presence of masking noise, but have no 

effect on performance in quiet, [3].  More recently, 
Giraud et al. ([5]) and Zeng et al. ([15]) showed, 

albeit inconclusively, that the performance of 

humans with severed MOC feedback results in 
relatively poor phoneme perception when the 

speech is presented in a noisy background. 

Inspired by this evidence we have developed a 
closed-loop model of the auditory periphery (i.e. 

PAM) which uses feedback to regulate the 

operating point of a model of cochlear mechanics, 

resulting in an auditory nerve representation less 

sensitive to changes in environmental conditions. 

In implementing the PAM we use a bank of 

overlapping cochlear channels uniformly 

distributed along the ERB (equivalent rectangular 

bandwidth) scale, four channels per ERB. Each 
cochlear channel comprises a nonlinear filter and a 

generic model of the inner hair cell (IHC) – half-

wave rectification followed by low-pass filtering,  

 
Figure 2: A block diagram of one cochlear channel. The 

central processor uses place/rate strategy.  

 

 

 

 

 
 

 

 
 

 
Figure 3: Goldstein’s multi bandpass nonlinearity model, 
MBPNL, [6]. 

 

 

 
 

 

 
 

 

 

representing the reduction of neural synchrony 
with AN fiber characteristic frequency (CF). The 

dynamic range of the simulated IHC response is 

restricted to a dynamic-range window (DRW), 
representing the observed dynamic range at the AN 

level. The simulated IHC response (representing 

instantaneous firing rate at the AN) is smoothed 

temporally (temporal time integration over a 10-ms 

window), resulting in a short-term average-rate 

representation. (See Fig. 2.) The cochlear filter is 
Goldstein’s MBPNL model of nonlinear cochlear 

mechanics, [6]. It operates in the time domain and 

changes its gain and bandwidth with changes in the 
input intensity, in accordance with observed 

physiological and psychophysical behavior. A 

parameter (GAIN) controls the gain of the tip of 
the simulated basilar membrane tuning curves. 

As for the efferent-inspired part of the model 

we mimic the effect of the medial olivocochlear 

efferent path (MOC). Recall that morphologically, 

MOC neurons project to different places along the 

cochlear partition in a tonotopic manner, making 

synapse connections to the outer hair cells and 

hence affecting the mechanical properties of the 

cochlea (e.g. increasing basilar membrane 
stiffness). Therefore, we introduce a frequency-

dependent feedback mechanism which controls the 

tip-gain of each MBPNL channel, permitting a 

prescribed intensity level of the sustained noise 

inside the DRW.  

Figure 4 shows – in terms of a spectrogram – 

simulated IHC responses to diphone je (as in “jab”) 

in two noise conditions (70 dB SPL / 10 dB SNR 

and 50 dB SPL / 10 dB SNR), for an open-loop 

MBPNL-based system (left-hand side) and for the 
closed-loop system (right-hand side). Due to the 
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nature of the noise-responsive feedback, the 
closed-loop system produces spectrograms that 

fluctuate less with changes in noise intensity 

compared to spectrograms produced by the open-
loop system. This property is desirable for 

stabilizing the performance of template-matching 

under varying noise conditions, as reflected in the 

quantitative evaluation reported in Section 2.1 . 

2.1. Quantitative evaluation – isolating PAM 

from template matching 

The evaluation system comprises a PAM followed 

by a TMC. Ideally, to eliminate PAM-TMC 

interaction, errors due to template matching should 

be reduced to zero (i.e. ideal template-matching). 

In reality we could only minimize interaction. This 
was acheived by using a methodology detailed in 

Ghitza et al. [4], in which the simplest possible 

psychophysical task in the context of speech 
perception was used, i.e. a binary discrimination 

test (Voiers’ Diagnostic Rhyme Test [DRT], [13], 

in particular). To further reduce PAM-TMC 
interaction we have synthesized DRT word-pairs, 

restricting stimulus (waveform) differences to the 

initial diphones only. With such constraints it was 

reasonable to use a template-matching operation 

with a minimum mean squares error as the distance 

measure, allowing us to focus on errors attributed 

to the PAM alone (Ghitza et al. [4]). 

Formal DRT sessions using human subjects 

have been conducted using the synthetic stimuli in 
quiet and in additive, speech-shaped noise at three 

levels (50, 60 and 70 dB SPL) and at three SNRs 

(0, 5 and 10 dB). Fig. 5 shows the errors produced 
by a DRT mimic with open-loop and closed-loop 

PAMs, compared to those made by human 

listeners. Signal conditions were the same as those 

used to collect the human data. Templates were 

created for the 60 dB SPL / 5 dB SNR condition. 

The abscissa marks the Jakobsonian dimensions: 

Voicing, Nasality, Sustention, Sibilation, 

Graveness and Compactness (denoted VC, NS, 
ST, SB, GV and CM, respectively).  The "+" sign 
stands for an attribute being present and the "-" 
sign for an attribute being absent. Bars show the 

difference between the average machine and 
human scores. The lines indicate plus and minus 

one standard deviation of the human data. Gray 

bars indicate that the difference is greater than one 

standard deviation. Scores with the open-loop 

PAM are worse than those of the human scores. 

Scores with the closed-loop PAM are similar to  

Figure 5: DRT mimic scores for open-loop (upper) and 

closed-loop (lower) PAM. 
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human scores except for VC- and ST-. Two points 
are noteworthy. First, when a sever mismatch 

occurs, closed-loop scores are superior to human 

scores while open-loop scores are worse. Hence, 

improving the open-loop system will require the 

exploitation of information beyond short-term rate 

(i.e. temporal). Second, although we predicted 

human performance in a binary task, parameters of 

the model were tuned to match errors between 

minimal pairs, jointly along all Jakobsonian 
dimensions. Hence we believe that the spectro-

temporal patterns generated by the resulting 

closed-loop PAM are an adequate description of 
the sensory representation of degraded speech.  

3. THE TEMPLATE MATCHING CIRCUIT 

In developing the PAM (Section 2) we used 

synthetic speech stimuli, with restricted phonemic 

variation, hence permitting the use of a minimum 
mean squares error as the distance measure for 

template matching. In this section we consider 

naturally spoken speech stimuli, seeking a 
perceptually relevant distortion measure between 

speech tokens that exhibit phonemic variability. 

3.1. Why use models of neural computation? 

In some sense speech decoding can be 

conceptualized as a search process, in which the 

search engine performs a template-matching 

operation comprised of two separate, but related 

steps. The first measures the distance between the 
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Figure 6: A block diagram of the TMC. The front-end 

is a filter bank with 26 critical-band channels spanning 

the range of the speech spectrum. Each channel drives 

100 Layer-I integrate-and-fire neurons. The parameters 

of all Layer-I neurons are identical except for the 
threshold-of-firing. All Layer-I neurons are driven by a 

single, global, sub-threshold oscillatory current with a 

frequency in the gamma range. Each Layer-II 

coincidence neuron is driven by six randomly selected 

“patches” of Layer-I neurons. 

current input (e.g. a syllable) and (stored) 
templates. The second associates the input with the 

best-matching template. In this sense, template 

matching is defined by the choice of templates as 
well as a distance metric. To develop algorithms 

capable of emulating human performance we first 

need to create accurate, detailed models for both 

stages of the search process. An explicit, analytical 

expression is difficult to derive for such models. 

Instead, we seek to emulate neural computation 
principles that are general in nature and shared 

across sensory (e.g. auditory, visual, olfactory) and 

motor modalities. We suggest that a template-
matching operation based on a plausible model of 

pertinent neural computation may implicitly 

incorporate characteristics essential for both the 
templates and the distance metric. 

Ghitza et al. [4], have recently developed a 

template-matching circuit (TMC) designed to 

recognize and label diphone units in the speech 

signal. The TMC is based on principles of cortical 

neural processing used by Hopfield, [10]. In this 

circuit, a diphone is represented (or “stored”) as a 

distinct group of neuronal states optimally tuned to 

the time-frequency signature of candidate diphones 
(whose durations range between 30-80 ms). Using 

the TMC we computed the precision with which 

diphones are recognized. Syllable-initial diphones 
(i.e. consonant-vowel, CV syllables) are typically 

identified more accurately than their syllable-final 

(i.e. coda, VC) counterparts. This result is 

consistent with both linguistic perception and with 

statistical analyses of conversational corpora where 

spectro-temporal variability of coda consonants is 
far greater than their consonantal counterparts in 

syllable onsets (Greenberg, [7]). Fig. 7 illustrates 

the behavior of the TMC in the DRT task. An 
important property of the TMC is its insensitivity 

to time-scale variation (consistent with Hopfield’s 

original formulation). Such time-scale insensitivity 
(e.g. to variation in speaking rate) is essential for 

recognizing phonetic entities that are inherently 

variable in time and spectrum. These are the sort of 

properties that characterize human speech 

comprehension and which could prove useful for 

many technical applications in speech recognition, 

synthesis, auditory prostheses. 

3.2. Why neural rhythmicity? 

A crucial component of the TMC is a quasi-

autonomous, sub-threshold oscillatory input of ca. 

25 Hz. This oscillation feeds into all input neurons, 

serving as a synchronizing pacemaker (Hopfield, 

[10]), similar to the synchronization facilitator 

proposed by Singer and others for cortical 
processing (e.g. Singer, [12]; Buzsáki, [2]). 

Such neural rhythms may play an important 

role in spoken-language comprehension. The 
specific timing of activation across the cortex can 

be visualized with electromagnetic recordings (e.g.  

magneto-encephalography, MEG). Typically, an 

increase in oscillatory activity is observed in 

specific rhythm bands, depending on the task. Of 

particular importance are the gamma (30-80 Hz) 

and the theta (3-10 Hz) rhythms (e.g. Bastiaansen 

and Hagoort, [1]). Theta oscillations are most 

closely associated (linguistically) with the syllable 
(mean duration 200 ms, [7]). Gamma oscillations 

are most closely associated with units important 

for diphone and other phonetic analyses. 

4. CONCLUSIONS 

In this presentation we suggest that robustness 
against background noise is provided principally 

by the signal processing performed by the  

 

ICPhS XVI Saarbrücken, 6-10 August 2007

www.icphs2007.de 167

http://www.icphs2007.de/


Figure 7: Performance of the TMC in the DRT task.  

State-1 represents 40 Layer-II neurons most sensitive to 

the initial diphone of the word “daunt.” Analogously, 

State-2 represents 140 neurons for the word “taunt.” The 

two upper-left panels show a spectrographic display of the 

front-end in response to the first 350 ms of two different 
realizations of the word “daunt”. Below each spectrogram 

is a time-histogram of the number of State-1 neurons 

responding to the corresponding stimulus (shown is the 

pertinent fraction out of 40). The lower-right four panels 

show the analogous display for the response of State-2 

neurons to the word “taunt”. The lower-left (and the 
upper-right) panels show the response of the neurons to 

the other word. Note the strong response to stimuli of 

matched tokens (and weak response to opposite tokens). 

 

 

 

 

 

 

 

 

 

 

 

 
peripheral circuitry. We showed that with an 

efferent-inspired closed-loop model of the cochlea, 

a place/rate model of central processor is sufficient 
to predict human performance in discriminating 

speech stimuli (with rich, relevant time-varying 

spectral patterns) in the presence of noise. This 
result is in contrast to the current notion based 

upon feed-forward models which suggests that a 

temporal (place or non-place) strategy is necessary 

in order to account for the robust human 

performance in noise. We point out that current 

understanding of auditory perception is based upon 

measurements with anesthetized animals (where 
the descending pathway is not functioning), and 

suggest that studies with awake animals (a very 

difficult task to perform) may alter current 
perspectives. 

We also described a neuronal circuit with 

template-matching capabilities, using a gamma 

rhythm at the core to facilitate synchronization 

across the neuronal array. The circuit exhibits 

properties, such as time-scaling insensitivity, 
consistent with (and desirable for) perception of 

spoken language. Although the functional role of 

the rhythms in language decoding is unknown at 
present, we speculate that the range of rhythms 

may serve as a hierarchical synchronization 

mechanism by which the CNS integrates language 

information (phones by gamma, words by theta, 
and sequences of words by delta rhythms). 

5. ACKNOWLEDGMENT 

This work is supported by the U.S. Air Force 

Office of Scientific Research. The work described 

in Section 2 was performed in collaboration with 

D. Messing, L. Delhorne and L. Braida at MIT. 

 

6. REFERENCES 

[1] Bastiaansen, M. and Hagoort, P. 2006. Oscillatory 
neuronal dynamics during language comprehension. 

Prog. Brain Res. 159, 179-196. 

[2] Buzsáki, G. 2006. Rhythms of the Brain. New York: 

Oxford University Press. 

[3] Dewson, J. H. 1968. Efferent olivocochlear bundle: Some 

relationships to stimulus discrimination in noise. J. 
Neurophysiol. 31, 122–130. 

[4] Ghitza, O., Messing, D., Delhorne, L., Braida, L., 

Bruckert, E., Sondhi, M.M. 2007. Towards predicting 

consonant confusions of degraded speech. In: Kollmeier, 

B., Klump, G., Hohmann, V., Langemann, U., 

Mauermann, M., Uppenkamp, S., Verhey, J. (eds.). 
Hearing – From Sensory Processing to Perception, 

Berlin: Springer Verlag, in press. 

[5] Giraud, A. L., Garnier, S., Micheyl, C., Lina, G., Chays, 

A., Chery-Croze, S. 1997. Olivocochlear efferents 

involved in speech-in-noise intelligibility. Neuroreport 8, 

1779-1783. 

[6] Goldstein, J.L. 1990. Modeling rapid waveform 

compression on the basilar membrane as a multiple-

bandpass-nonlinearity filtering. Hear. Res. 49, 39-60. 

[7] Greenberg, S. 1999. Speaking in shorthand - A syllable-

centric perspective for understanding pronunciation 
variation. Speech Communication 29, 159-176. 

[8] Greenberg, S. (ed.) 1988. Representation of Speech in the 

Auditory Periphery.  J. Phon. 16, 1-149 

[9] Guinan, J. J. 1996. Physiology of olivocochlear efferents.  

In: Dallos, P., Popper, A. N. Fay, R.R., (eds). The 

Cochlea, New York: Springer Verlag,  435-502. 
[10] Hopfield, J.J. 2004. Encoding for computation: 

Recognizing brief dynamical patterns by exploiting 

effects of weak rhythms on action-potential timing. Proc. 

Nat. Acad. Sci. 101, 6255-6260. 

[11] May, B.J., Sachs, M.B. 1992. Dynamic range of neural 

rate responses in the ventral cochlear nucleus of awake 

cats.  J. Neurophysiol. 68, 1589–1603. 

[12] Singer, W. 2005. Putative role of oscillations and 

synchrony in cortical signal processing and attention. In: 

Itti, L.,,Rees, G., Tsotsos, J.K. (eds.) Neurobiology of 

Attention. Amsterdam: Elsevier, 526-533. 
[13] Voiers, W. D. 1983. Evaluating processed speech using 

the diagnostic rhyme test. Speech Techn. 1 30–39. 

[14] Winslow, R.L., Sachs, M.B. 1988. Single-tone intensity 

discrimination based on auditory-nerve rate responses in 

backgrounds of quiet, noise, and with stimulation of the 

crossed olivocochlear bundle.  Hearing Res. 35,165–190. 
[15] Zeng, P. G., Martino, K. M., Linthcum, F. H., Soli, S. 

(2000). Auditory perception in vestibular neurectomy 

subjects.  Hearing Res. 142, 102-112. 

State-1

40

neurons

State-2

140

neurons

State-1

40

neurons

State-2

140

neurons

tauntdaunt tauntdaunt

ICPhS XVI Saarbrücken, 6-10 August 2007

168 www.icphs2007.de

http://www.icphs2007.de/

